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A METHOD FOR THE ANALYSIS OF NONLINEARITIES IN AIRCRAFT

DYNAMIC RESPONSE TO ATMOSPHERIC TURBULENCE

Kenneth Sidwell*
Langley Research Center

SUMMARY

An analytical method is developed which combines the equiva-

lent linearization technique for the analysis of the response of

nonlinear dynamic systems with the amplitude modulated random pro-

cess (Press model ) for atmospheric turbulence The method is

initially applied to a bilinear spring system The analysis of

the response shows good agreement with exact results obtained by

the Fokker-Planck equation The method is then applied to an

example of control-surface displacement limiting in an aircraft

with a pitch-hold autopilot

INTRODUCTION

Nonlinear effects can be important in aircraft dynamic
response to atmospheric turbulence particularly at design load

levels The importance of nonlinear effects is widely recog-
nized especially those influencing the action of stability aug-
mentation and active control systems of aircraft in atmospheric

turbulence Structural design criteria based upon random process

theory ( the power spectral density method ) require that the non-

linear effects of control system action upon loads at the limit

load level be realistically or conservatively accounted for ( See
rets and 2. ) Current analysis procedures generally use analog

*NASA-NRC Resident Research Associate



simulation to study effects of nonlinearities upon the control

system action Several examples of the analysis of stability

augmentation systems using analog simulation are the analyses for

the B-52 (ref. 3) the B-70 (ref 4) and the Lockheed 01

( rets 5 and 6 ) The study of reference 3, for example shows that

the displacement limiting of the control surface in severe turbu-

lence has the effect of making the control system inoperative

This general effect is also shown by experimental data discussed in

reference 7 Thus nonlinear effects can be especially important

in the use of control systems to alleviate turbulence-induced

loads in aircraft

A method for the analysis of nonlinear effects in aircraft

dynamic response to atmospheric turbulence is developed in the

present study The method combines two basic analytical concepts

) the analysis of the response of nonlinear dynamic systems to

random processes and (2 ) the development of the amplitude modu-

lated random process for modeling atmospheric turbulence Exact

solutions for the response of some nonlinear dynamic systems have

been obtained by use of the Fokker-Planck equation rets 8 and

9) Approximate solutions have been obtained by the technique of

equivalent linearization The development and reviews of this

method and its applications are given in references 0 to 2. The

amplitude modulated random process which is used to model atmo-

spheric turbulence was developed by Press and his associates

refs 1 3 and 4 ) The mathematical properties of the amplitude

modulated random process have been examined in references 15 and

6 The original contribution of the present study is the com-

bination of these two separate subjects and the application of I

the resulting analytical method to one example of control limiting

effects in aircraft dynamic response to atmospheric turbulence

The present study is divided into two parts The first part

is the development of the response of a spring-mass-damper system

with a bilinear stiffness force The response of this nonlinear

system to a Gaussian conditional process is developed by use of

the Fokker-Planck equation The response to the amplitude modu-

2



lated process is then developed by combining the response to the

conditional process with the random variation of the amplitude

parameter of the conditional process The exact solution and

two approximate solutions are developed Since the bilinear

spring system allows an exact solution the adequacy of the

approximate solutions for this type of nonlinear dynamic system

can be evaluated The second part of the study is an applica-

tion of the equivalent linearization technique to one problem

of nonlinear aircraft response to atmospheric turbulence An

example of control surface deflection limiting in an aircraft

with an autopilot operating in a pitch-hold mode is considered

SYMBOLS

A standard deviation factor of conditional process

b standard deviation of amplitude (o ) process

b^ turbulence intensity parameter

CQ normalization constant of probability density

function

C aerodynamic moment coefficient for elevator deflection

E[ ] ensemble average

E[ |o ] ensemble average of conditional process ( conditional

on value o )

erf( ) error function ( ref. 7 )

erfc ( ) complementary error function 1 erf( )

f(x) stiffness force

3



g(y ,n ) = Y exp[ (y 2 1 )n ^erfc CYn )

h( ) nonlinear limiting function

h control effectiveness factor associated with nonlinear
C

elevator deflection

K feedback gain for subscripted quantity

Kp( ) modified Bessel function of order zero ( ref. 7 )

k linear stiffness force coefficient

M, aerodynamic moment due to elevator deflection
6

m mass

N( ) exceedance expression or expected frequency of positive

slope crossings of indicated level

NO expected frequency of positive slope crossings of zero

level

P. turbulence probability parameter

p( ) probability density function

p(x |o ) conditional probability density function of X process t
j

conditional on value a
j

q^ dynamic pressure

Sc reference area times reference chord length

4



s Laplace transformation variable also amplitude parameter

in appendix A

t time

tg^ servo system characteristic time

v time derivative of x

x displacement of bilinear spring system

X)- breakpoint of bilinear stiffness force relation

Xyj limiting mean value of displacement of nonsymmetric

bilinear spring system

XQ ( Y^Xb
a parameter of nonsymmetric bilinear stiffness force

relation modulus of ratio of negative and positive

displacement breakpoints

"g- ratio of vertical component of turbulence velocity

to aircraft forward speed

B linear damping force coefficient

V ^&{t’) Dirac delta function

sc commanded elevator deflection perturbation

sp physical elevator deflection perturbation

5



6 physical limit of elevator deflection

n ^//2A^a
e pitch angle perturbation

^ (t) Gaussian white noise process

a amplitude random process amplitude parameter of condi-

tional process standard deviation of subscripted pro-

cess for example o means standard deviation of y
7

Subscripts

am amplitude modulated process

b breakpoint

c conditional

dr Dempster-Roger method

e equivalent linearization

i j ,k ,n integer index

p physical

"i

1 2 regions of stiffness force relations

A tilde over a symbol denotes a variable of integration

Dots over a symbol denote derivatives with respect to time

6



RESPONSE OF SYMMETRIC BILINEAR SPRING SYSTEM

The response of a specific nonlinear dynamic system to random

excitation by the amplitude modulated process is analyzed in this

section The nonlinear system is one for which the exact solution

of the system response to a stationary Gaussian process is known

The present development combines the analysis of the response of

nonlinear dynamic systems by the Fokker-Planck equation with the

development of the amplitude modulated random process The ampli-

tude modulated process which is the combination of a local random

process with a random amplitude modulation is discussed in appen-

dix A. The application of the Fokker-Planck equation to nonlinear

dynamic systems is also discussed in appendix A The solution for

the response of the nonlinear dynamic system to the amplitude mod-

ulated process is developed in two steps First the solution is

developed for excitation by the conditional process which is a

Gaussian process with a given value of amplitude parameter The

effects upon the response of varying the amplitude parameter of

the excitation process are considered in detail Second the

solution is developed for excitation by the amplitude modulated

process by using the results for the conditional process and

introducing the random amplitude modulation through the random var-

iation of the amplitude parameter of the conditional process

Bilinear Spring System

A single-degree-of-freedom spring-mass-damper system with a

nonlinear stiffness force is considered

mx + P x + f( x) = a e (t) ( )

A specific nonlinear stiffness force the symmetric combination of

two regions of linear stiffness force is considered The

resulting bilinear stiffness force relation is

7
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k2(x + xo ) (x < -xb)

f(x) = k.,x (-Xb ^ x ^ Xb) (2 )

^(x ^ (Xb < x)

where

T 2 k!
k^

X^ = ( 1 Y 2 )Xb

The stiffness force relation is plotted in figure as a function

of the displacement The symmetric stiffness force has two ( the

inner and the outer) linear regions which intersect at the dis-

placement breakpoint x^
The response of the bilinear spring system to random excita-

tion is dominated by one of the two linear regions in. the limiting

response cases In the limit of small displacements relative to

the breakpoint the response is dominated by the inner linear

region of the bilinear stiffness force The limit of small dis-

placements corresponds to a large value of the breakpoint x^ or

to a small value of the amplitude -parameter o or to both In

the limit of large displacements the response is dominated by the

outer linear region Thus the solution for the response of the

nonlinear system to the random excitation has these two limiting

cases plus intermediate cases where both regions of the stiffness "I
force significantly influence the system response as is discussed

subsequently "j

Conditional Process

The excitation process of the bilinear spring system ( eq ( ) )

is a Gaussian white noise process which is multiplied by an

8



amplitude parameter o The excitation process is accordingly con-

sidered to be a conditional process that is a Gaussian white,
noise process with a given value of the amplitude parameter
Thus the excitation process has an arbitrary reference value of

the power spectral density function which is multiplied by the

square of the amplitude parameter The dynamic response of the

bilinear spring system is described in probabilistic terms by the
joint probability density function of the system displacement and

velocity which is conditional on the value of the amplitude param-

eter. From this function the associated moments and exceedance

expression for the response to the conditional process can be

determined

Exact solution The development of the joint probability

density function of the system displacement and velocity from the

application and solution of the Fokker-Planck equation is dis-

cussed in detail in appendix B. The displacement and velocity of

the system response are independent for the conditional process

p(x ,v o ) p( x |o ) p(v| o ) (3 )

where v = x Thus the displacement and velocity can be consid-
ered separately By use of the Fokker-Planck equation the

probability density function of the displacement is

00 exp
\ ;-^2 ^(x + xo )2 + ^wo]} (x < -xb)

^ 2hx2 a "J
P(x |a ) CQ exp f- --1-- x2\ (-Xb ^ x ^ x^)

I 2Ax1 a d J

00 exp < ~~^[{x xo )2 + ^b^Jl <^b < ^\ 2Ax2’-0 2 -YL -’ (4 )

9



where

^ k! , ^2 ( 5)
A 2 kp
"x

The quantity CQ is a normalization constant The displacement

is non-Gaussian because of the nonlinearity of the stiffness

force The probability density function consists of G.aussian

regions which correspond to the linear regions of the symmetric

stiffness force relation The mean and variance of the distri-

butions within these regions are those of the corresponding lin-

ear systems The probability density function is Gaussian in

the limits of zero and infinite values of the stiffness break-

point x. and has the functional forms for the corresponding lim-

iting linear systems The effects of the stiffness nonlinearity

are shown in a concise form by the conditional variance of the

displacement which is calculated from the conditional probabil-

ity function of the displacement (eq (4) )

E[x2 o] = o^2 = A^(a) o2 6

,2 ) f 2_ ^2 ^-^2 + [1 + 2^2 D ^g^.^Ay2 a) ________^ ^ .______________-__-^
A 2 erf n + g ( y, n )
x1

7)

where

n ^N/2A^ a

g( y, n ) = v exp [( y2 ) n2] erfc ( ^rn )

1 0



The conditional standard deviation is expressed in terms of the

standard deviation factor A This notation is convenient since

the standard deviation factor is independent of the amplitude

parameter o for linear systems

The dependence of the standard deviation factor of the dis-

placement upon both the amplitude parameter o and the stiffness

displacement breakpoint x^ is shown in figures 2 and 3. Figure 2

shows the standard deviation factor of the displacement A
(eq ( 7 ) in nondimensional form as a function of the amplitude

parameter. The relationship is shown for the value of the parame-

ter Y (eq- ( 5 ) ) equal to two. In this case the incremental stiff-

ness force is decreased and the associated standard deviation fac-

tor is increased in the outer linear region The standard devia-

tion factor of the displacement is dominated by the inner or outer

regions of the stiffness force relation eq (2) in the limits of

very small or very large displacements respectively The stan-

dard deviation factor of the displacement approaches that of the

inner linear system A^i in the limit of small values of the

amplitude parameter o Similarly the factor approaches that of

the outer linear system A^? as the amplitude parameter becomes

large The same response pattern occurs in the limits of large

and small values of the stiffness breakpoint Xu respectively

Thus the standard deviation factor of the displacement shows the

two limiting cases of the bilinear spring system. The standard

deviation factor of the displacement is plotted in a different

normalized form in figure 3 for several values of the parameter y

Again the standard deviation factor shows the two limiting cases

and the intermediate states of the bilinear stiffness force rela-

tion In normalized form the standard deviation factor is weakly
dependent on the value of the parameter y

The standard deviation of the displacement is plotted in non-

dimensional form in figure 4 as a function of the amplitude

parameter for one value of the parameter y The values shown in

figure 4 correspond to those in figure 2; the two quantities are

related by equation ( 6) For linear systems the relationship of

1



figure 4 is linear since the standard deviation factor is inde-

pendent of the amplitude parameter Deviations from a linear

relation are due to the nonlinearity of the dynamic system

Also shown in figure 4 is the Dempster-Roger approximation for

the standard deviation which is discussed subsequently

The probability density function of the velocity of the

bilinear spring system is determined by the Fokker-Planck equa-

tion for the conditional process By using the results of

appendix B, the conditional probability density function of the

velocity is

p(v |a ) = ---- exp f- -.V2-\ (8 )

V/^V ^ 2A^a2^
Thus the velocity Is a Gaussian random variable The standard

deviation factor of the velocity Ay is independent of the

amplitude parameter In the present case the velocity is not

affected by the nonlinearity in the ’stiffness force

The exceedance expression ( the expected frequency of posi-

tive slope crossings of a given level) is determined from the

joint probability density function of the displacement and

velocity rets 8 and 9 ) as

N(x |a = j v p(x ,v o ) dv ( 9 )

0

The relation between the exceedance expression and the probability

density function of the displacement is obtained by substituting

equations ( 3 ) and ( 8 into equation ( 9 ) to obtain

N(x a ) - ^ p( x |a ) ( 1 0)

\^F

2

1



In this case the exceedance expression has the same functional

form as the probability density of the displacement This prop-

erty is a consequence of the independence of the displacement

and velocity for the conditional process ( eq ( 3 ) )

The preceding analysis shows that it is possible to develop

the exact solution for the probability density function of the

system response in the case of the bilinear spring system

Approximate methods of solution are also examined since the

approximate methods can be applied to a wid.er class of nonlinear

dynamic systems For the present system the results of approxi-

mate solution methods can be compared with the exact solution

thus the validity and limitations of the approximation methods

are indicated

Dempster-Roger approximation One approximate solution method

was developed by Dempster and Roger ( ref. 3 ) The Dempster-

Roger approximation which was developed from the results of ana-

log computer studies of nonlinear systems specifically considers

the variation of the standard deviation of the displacement with

the amplitude parameter a For small values of the amplitude

parameter the standard deviation of the displacement is determined

by the inner region of the stiffness curve For large values the

standard deviation is determined by the outer region of the stiff-

ness curve Accordingly, the variation of the standard deviation

of the displacement with the amplitude parameter is approximated

with a bilinear relation

~\-\ (0 $ CT $ o^)
"xc .dr = ( I D

_A^ o + (A^ A^) "b ^b < CT)

The standard deviation of the displacement can be determined

within the accuracy of the Dempster-Roger approximation if the

value of the amplitude parameter breakpoint o

^ can be deter-
mined Since the exact relation is known in this case the value

of this breakpoint can be determined By using the exact relation

3



for the standard deviation of the displacement eqs (6) and ( 7) )

and developing the asymptotic expansion for large values of the

amplitude parameter the relation for the amplitude parameter

breakpoint is

a = ^-{y + 1 ) ( 12)
b

^ \1

Based upon analog computer studies of control surface limiting

effects in aircraft response problems the follow-ing relation was

used in reference 3:

b 1---- ( 1 3)
V2 A^

This expression has the same functional relation between the sys-

tem parameters as equation 12) but omits the dependence on the

response in the second linear region which appears through the

parameter Y For the cases considered in reference 3 equa-

tion 3 ) predicts values of the amplitude parameter breakpoint

which are smaller than the values given by equation ( 12)

A comparison of the Dempster-Roger approximation (eqs )

and ( 12) and the exact relation eqs 6 and ( 7) for the stan-

dard deviation of the displacement is plotted in figure 4 in non-

dimensional form as a function of the amplitude parameter. The

approximation gives the correct behavior in the limits of small

and large values of the amplitude parameter Figure 5 shows the

corresponding comparison of the approximate and exact values of

the standard deviation factor of the displacement which is

plotted in nondimensional form as a function of the amplitude

parameter (Fig. 5 also shows results from another approximate

method which are discussed subsequently. ) The exact relation is

the same as that plotted in figure 2. Again the Dempster-Roger

approximation gives the correct behavior in the limits of small

and large values of the amplitude parameter but gives a low esti-

mation of the standard deviation factor for intermediate values

1 4
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In the Dempster-Roger approximation the bilinearity in the

displacement is replaced with a bilinearity in the amplitude

parameter o The resulting approximate dynamic system is linear

for the response to the conditional process that is for a given

value of the amplitude parameter The conditional response of the

nonlinear system is that of a linear system whose standard devia-

tion factor for the displacement depends on the amplitude parame-
ter Thus the system response to the conditional process is

Gaussian The displacement has a zero mean value and a standard

deviation given by equation ( ) The probability density func-

tion of ’the velocity is not affected by the stiffness nonlinearity

an assumption which matches the exact solution in this case
Thus the joint probability density function of the displacement

and velocity, and the exceedance expression are known for the con-

ditional response

Equivalent linearization approximation Another method of

appproximate solution for the response of nonlinear dynamic sys-

tems is the equivalent linearization technique Discussions of

this technique are given in references 10 9 and 20

In the equivalent linearization technique the nonlinear

response forces are replaced by equivalent linear relations The

differential equation of the equivalent linear system is that of

the original system eq ( ) ) the nonlinear stiffness force being

replaced by the equivalent linear relation

mx + P x + kg(o ) x = a (t ) ( 4)

The coefficients of the equivalent linear forces are deter-

mined by the condition that the variance of the difference between

the nonlinear and the equivalent linear response forces be a mini-

mum. For the present system with nonlinearity in the stiffness

force only, the variance to be minimized is

E{[f(x) kg (o ) x]2 ^} ( 15 )

15
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The value of the equivalent linear stiffness coefficient kg ( o)

which minimizes this quantity is

, E[x f(x) o]
ke ( o) = --_ o -I" ( )

E ^S a]

The indicated statistical averages are determined from the condi-

tional probability density function of the response of the equiva-

lent linear system. The specific relations for the required sta-

tistical averages are

/-
E[x f(x) o] = / x f(x) Pg (x o) dx 7)

J

ELX2\ a] ^c e2 - Axe2^) CT2 ( 8

The displacement and velocity of the response of the equiva-

lent linear system to the Gaussian conditional process are both

Gaussian and are independent By using the conditional variance

(eq ( 18 the probability density function of the displacement

is

-x2/2A 2"2
p^x c. ) = e

x /"^ 9 )
e v2^a

Since the standard deviation of the velocity is not affected by

the nonlinearity of the stiffness force in this case the associ-

ated probability density function is the same as the exact rela-

tion (eq. ( 8) )

The equivalent linear stiffness coefficient and the standard

deviation factor of the displacement are related in a simple man-

ner for the linear system of equation 4) with white noise

excitation

16
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A 2 ( o) k.,--3-- (20)

A^ 2 ke( a)
(20J

Combining equations ( 16 ) to ( 8) with equation ( 1 9) and using the

relation for the bilinear stiffness force equation ( 2 ) yields the

relation for the equivalent linear stiffness coefficient as

k ( o) = k, erf f ^ ^ + kp erfc xb \ (21 )1 l^xe ^ 2 [^e0)
The equivalent linear stiffness coefficient and the associated

standard deviation factor of the displacement are determined as a

function of the amplitude parameter by combining equations ( 20)
and 21 ) The equations are solved numerically by iteration The

equivalent linear stiffness coefficient is plotted in figure 6 in

nondimensional form as a function of the amplitude parameter for
the value of the parameter Y used in figures 4 and 5 The value
of the equivalent linear coefficient approaches the values of the
stiffness coefficients of the inner and outer regions of the
stiffness force relation in the limits of small and large values
of the amplitude parameter respectively

The standard deviation factor of the displacement of the

equivalent linear system is plotted in figure 5 in nondimensional
form as a function of the amplitude parameter The standard
deviation factor corresponds to the values of the equivalent lin-
ear stiffness coefficient shown in figure 6 the two quantities
are related by equation ( 20 ) From figure 5 it is seen that the
equivalent linearization method gives results which are very close
to the exact results for the standard deviation factor of the
displacement

Amplitude Modulated Process

The solution for the response of the bilinear, spring system
to excitation by the amplitude modulated random process is devel-

17



oped in this section The formulation and the analysis of the

response of dynamic systems to the amplitude modulated random pro-

cess are discussed in appendix A. The response of a dynamic sys-

tem to the amplitude modulated process is developed from the

response to the Gaussian conditional process by introducing the

random variation of the amplitude parameter The probability den-

sity function of the amplitude parameter is specified to have a

Gaussian related form

’0 (a < 0)

p( o) (22

J2 1 e-^/2b2 (0 ^ o )
Vir b

The probability density function of the displacement of the bilin-

ear spring system is determined from the conditional probability

density function of the displacement and the probability density

function of the amplitude parameter

r
P(x) = ( p(x o) p o) do 23)

"0

Exact solution The exact solution for the response of the

bilinear spring system to the amplitude modulated process is

obtained by combining the exact solution of the response to the

conditional process with the random variation of the amplitude

parameter Although the resulting expressions are thus identified

as the exact solution the development of the expressions for the

response to the amplitude modulated process requires the use of

the quasi-steady approximation that is the dynamic effects of

the slowly varying amplitude process are omitted In this sense

the resulting expressions are approximate as discussed in

appendix A.

18



The exact expression for the conditional probability density

function of the displacement is equation ( 4 ) By combining equa-
tions ( 4) and ( 22 ) the probability density function of the dis-

placement response to the amplitude modulated random process is

obtained from equation 23) The resulting probability density

function of the displacement cannot be expressed in analytical
form since the required integration over the o variable is

intractable

The variance of the displacement is obtained from the condi-

tional variance by using the probability density function

(eq 23 ) )

/"

E [x2] o^2 = ^ E [x2 a] p( a da A^2 (^ ^2 p( ^ ^ ( 24)
^O ^O

The last expression introduces the standard deviation factor by

using equation ( 6 ) The required integration over the amplitude

parameter a is intractable and must be evaluated numerically
The exact values of the standard deviation of the displacement are
shown in figure 7 in nondimensional form as a function of the

standard deviation b of the amplitude process Fig 7 also

shows two approximate results which are discussed subsequently
The results in figure 7 for the response to the amplitude modu-

lated process correspond to those in figure 5 for the conditional

process The standard deviation of the displacement approaches

that of the two limiting linear systems of the stiffness force

relation for the limiting values of both the standard deviation of
the amplitude process and the breakpoint of the stiffness force
relation

The probability density function of the velocity of the sys-
tem response to the amplitude modulated process is determined from
that for the response to the conditional process as

19



P(v) = y p(vl o) P( a) do (25)

’0

For the conditional process the velocity of the system response is

Gaussian ( eq ( 8) ) Thus the velocity is itself an amplitude

modulated variable for the response of a linear system

p(v) = KoA^l (26 )
^V VW

The quantity Kp is a modified Bessel function of zero order

(ref. 17)

The exceedance expression for the displacement response to

the amplitude modulated process is obtained from that for the con-

ditional process

N(x) = / N(x o) p( o) do ( 27 )

0

This equation follows from the relation between the exceedance

expression and the joint probability density of the displacement

and velocity by using the relation for that probability density

function for the amplitude modulated process which is similar to

equation 23 ) By using the exceedance expression ( eq ( 0) ) for

the conditional process and equation ( 27) the relation for the

exceedance expression of the displacement response to the ampli-

tude modulated process is

/*

N(x) = A- / p(x o) p( o) o do 28

^ JQ

The two probability density functions are given in equations ( 4 )

and ( 22 ) The required integration over the o variable is

20
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intractable and must be evaluated numerically-. The resulting

exceedance expression for the exact solution of the system dis-

placement is plotted in figure 8 in nondimensional form as a func-

tion of the displacement level The system parameters are the

same as those used in figure 7. The exact exceedance expression

shows the predominantly exponential behavior of the amplitude modu-

lated process For comparison the exceedance expressions for the

limiting linear systems corresponding to the two regions of the

bilinear stiffness force relation (eq (A1 2) ) are also plotted

The exact exceedance expression shows the dominant influence of

the inner and outer regions of the bilinear stiffness in the

limits of small and large values of the nondimensional response
level respectively. For large response levels the exact exceed-

ance expression parallels that of the linear system of the outer
region of the bilinear stiffness force relation but is signifi-

cantly lower in value

Denmster-Roger approximation The Dempster-Roger approxima-

tion specifically considers the variation of the amplitude param-

eter in the conditional process The corresponding variance of

the response to the amplitude modulated process follows from the

conditional standard deviation eq ) The required integra-

tion over the amplitude parameter in equation 24) can be evaluated

because of the simple relation which is assumed for the conditional

standard deviation

x, dr2 = Ax\2b2{erf’ e + [v2 + Se ^y D ^erfc e

5 -) 2\c- e (y D’e-^ \ ( 29 )
Vir j

where

e = lb_ Y + 1 Xb
v2b 2 ^ A.^ b
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This approximation for the standard deviation of the displacement

is plotted in figure 7 in nondimensional form as a function of the

standard deviation b of the amplitude random process The

approximation shows the correct qualitative properties particu-

larly the dominant influence of the inner and outer regions of the

bilinear stiffness force in the limiting cases However for the

intermediate cases the Dempster-Roger approximation predicts

values below the exact values of the standard deviation of the

displacement

Equivalent linearizatiQn_apBrQxi.matJQn The variance of the

displacement response to the amplitude modulated process for the

equivalent linearization technique is obtained from equation 24)

by using the approximation for the conditional variance eqs (20)

and 21 ) ) The required integration on the amplitude parameter is

done numerically The resulting standard deviation of the dis-

placement for the equivalent linearization technique is plotted

in figure 7 in nondimensional form as a function of the standard

deviation of the amplitude process The standard deviation

obtained by the equivalent linearization technique closely matches

the exact results for all values of the standard deviation of the

amplitude process

The corresponding exceedance expression is determined from

equation ( 28 by using the conditional probability density func-

tion of the displacement for the equivalent linear system eqs 9

to ( 21 ) ) The required integration is done numerically The

resulting exceedance expression is plotted in figure 9 in nondi-

mensional form as a function of the displacement level together

with the corresponding exact expression from figure 8 The

exceedance expression for the equivalent linearization technique

closely matches the exact expression at low response levels At

higher response levels the approximate exceedance expression

underestimates the system displacement The underestimation of

the exact exceedance expression is consistent with the underesti-

mation of the exact values of the standard deviation ( fig 7 )

Also a comparison of figures 7 and 9 shows that the equivalent
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linearization technique gives a better estimate of the standard

deviation than of the exceedance expression of the system dis-

placement This is a general property since the technique does
not account for the non-Gaussian aspect of the response to the
conditional process

The present development applies the equivalent linearization
technique to the conditional process Thus an equivalent linear

stiffness force is determined for each value of the amplitude
parameter The equivalent linearization technique can be applied
in an alternate manner which is directly to the amplitude modu-

lated process In this alternate approach the nonlinear system is

replaced by a single linear system without considering the condi-

tional process By using the equivalent linearization condition
the minimization of the variance of equation 5 the expression

for the stiffness coefficient of the single equivalent linear sys-
tem is

E[x f(x) ]

^ am r ^-- 30
E [x2]

In this case the response of the equivalent linear system is

itself an amplitude modulated process for the response of a linear
system

Pe am (x ) - ^-1--^ KQ f^-A 3D
"xe am0 ^xe am"/

^ am ^) = ^ exp / ^ \ 32)
y’xe am0/

The statistical averages in equation ( 30) are based on the proba-
bility density function of the single equivalent linear system
(eq ( 31 ) ) The equivalent linear stiffness coefficient ( eq (30) )
is a function of the standard deviation b of the amplitude process
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The resulting variance and exceedance expression are thus deter-

mined for a given value b The exceedance expression is a single

exponential function ( eq ( 32 ) ) This relation would appear as a

linear function on the coordinates of figure 9 Comparison of

this approximate relation with the exact exceedance expression

shows that a single exponential function is a poor approximation

for the entire range of the displacement levels Thus the appli-

cation of the equivalent linearization technique directly to the

amplitude modulated process gives a significantly poorer approx-

imation than the indirect application through the conditional

process discussed previously

Summary and Discussion of Response of Symmetric

Bilinear Spring System

The response of the dynamic system with a symmetric bilinear

spring to excitation by the amplitude modulated white noise pro-

cess is determined by Fokker-Planck equation The solution pro-

cedure involves determining the response to the Gaussian condi-

tional process and then introducing the random variation of the

amplitude process The probability density functions of both the

displacement and velocity the associated variances and exceed-

ance expression are determined Two approximate analytical tech-

niques are applied to the same system The accuracies of these

techniques are assessed by comparison with the exact solution

The approximation techniques introduce the system nonlinear-

ity through the standard deviation factor A of the displacement

response to the conditional process The dynamic system is consid-

ered to be linear for any given value of the amplitude parameter

a of the excitation conditional process The critical point of

the approximation techniques is the determination of a functional

relation between the standard deviation factor and the amplitude

parameter The Dempster-Roger approximation specifies a bilinear

relation between these two quantities The limitation of this

method is the lack of any general procedure for finding the
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specific form of this bilinear relation In the bilinear spring

system this relation can be determined since the exact solution

for the response is known In this case the Dempster-Roger

approximation gives the correct qualitative properties of the

response but generally gives values of the displacement response

which are appreciably below the exact ones The equivalent lin-

earization technique replaces the nonlinear system with an equiv-

alent linear one whose properties are determined by the tech-

nique For the bilinear spring system the equivalent lineariza-

tion technique which is applied to the conditional process gives

a good approximation to the exact values of the system response to

the amplitude modulated process

The preceding development considers the response of a sym-

metric nonlinear system As a result of the symmetry property

all the odd order moments are zero The case of a nonsymmetric

bilinear spring system is considered briefly in appendix C.

RESPONSE OF AUGMENTED AIRCRAFT SYSTEM

A method for the analysis of nonlinear effects in aircraft

dynamic response to atmospheric turbulence is developed in the

present section The method is the combination of the application

of the equivalent linearization technique for the analysis of non-

linear dynamic systems with the development of the amplitude modu-

lated process used to model atmospheric turbulence The equiva-

lent linearization technique is applied to replace the nonlinear

dynamic system with an equivalent linear system The response of

the resulting dynamic system to a Gaussian conditional process

with a given amplitude parameter is developed by the methods of

linear system theory The response of the system to the amplitude

modulated process is then developed by introducing the random

variation of the amplitude parameter The method of analysis is

applied to one example of the longitudinal motion of an aircraft

with an autopilot operating in a pitch-hold mode The nonlinear
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element is the limiting of the control surface displacement which

is commanded by the autopilot

Equations of Augmented Aircraft

An aircraft which is representative of the class of small

corporate jet transports is considered The present combination

of aircraft and stability augmentation system was considered in

detail in reference 21 The longitudinal equations of motion and

the associated control law for the linear aircraft system are

summarized in appendix D. The linear equations of motion are

basically the classical equations of the dynamic stability of a

rigid aircraft ( ref. 22 with the addition of the forces due to

the turbulence field Quasi-steady aerodynamics are used except

for the inclusion of a wing-tail convective time lag The control

system operates in a pitch-hold mode by controlling the elevator

deflection

A block diagram of the basic aircraft response system

including the nonlinear effect of the control surface displacement

limiting is shown in figure 10. The aircraft dynamics consist of

the linear response of the basic aircraft motion The feedback

loop consists of four elements The first element is the sensor

which measures the pitch and pitch rate of the aircraft motion

The second element accounts for the dynamics of the servosystem

which drives the elevator deflection These two elements form

the control law of the autopilot system The third element is the

displacement limiting of the elevator deflection The fourth ele-

ment generates the aerodynamic forces due to the physical motion

of the control surface Except for the displacement limiting of

the elevator the aircraft system is linear

The control law specifies the elevator deflection which is

commanded by the control system Since the autopilot is designed

to reduce aircraft pitching motion the control system consists of

gains on the pitch and the pitch rate motions and includes a term

accounting for the dynamics of the elevator servosystem
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tch6c + ^ c = Kee + K9e (33 )

The aerodynamic forces which are generated by the physical

deflection of the elevator are given by linear aerodynamic theory
The relation for the aircraft moment due to the physical elevator

deflection is

^ ^^m/p ( 34)

The main quantity of interest is the aerodynamic moment coeffi-

cient for the elevator deflection C^ The aerodynamic lift
due to the physical elevator deflection is given by a similar

relation

Both the control law and the elevator aerodynamic relations

are linear There are two variables associated with the elevator

action the commanded deflection from the control law and the

physical deflection which generates the aerodynamic forces These

two quantities are related in a nonlinear manner because of the

deflection limiting

’- ^pl ^ < ^l )

’P = h( ’c) ^c (- ^l ^ ^c ^ ^l ) (35)

/Pi ^1 ’ ^
This relation is plotted in figure 1 For commanded deflections
within the symmetric limit values the two quantities are equal
If the commanded deflection is outside the limit values then the
physical deflection is equal to the limit values Since the aero-
dynamic forces are proportional to the physical elevator deflec-
tion ( eq ( 34 ) ) the relation plotted in figure 1 is also the
relation between the aerodynamic forces and the commanded eleva-
tor deflection
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The preceding relations are combined with those for the basic

aircraft dynamics to give the nonlinear equations of motion for

the augmented aircraft The system of equations has three coor-

dinates of basic aircraft motion perturbations in forward speed

angle of attack, and pitch angle The system has two coordinates

of elevator action commanded and physical elevator deflections

The system has three equations for the basic aircraft motion which

include the aerodynamic forces due to the physical elevator

deflection The system has two equations related to the control

system action the control law ( eq ( 33 ) ) and the nonlinear rela-

tion between the two elevator deflection variables ( eq (35) )

Application of Equivalent Linearization Technique

The results of the previous application of this method to the

bilinear spring system give reasonable confidence that the method

will give a good estimation of the response of the present air-

craft system The confidence in the application of the method is

based upon the similarity in the mathematical properties of the

two dynamic systems This point is discussed before applying the

method to the aircraft system

Similarity of bilinear spring and aircraft systems The dif-

ferential equation of the bilinear spring system ( eq ) ) is

rewritten in a form which is similar to that of the augmented

aircraft

mx + g x + k?x = (ki kp) h( x) + o e (t) (36)

The response stiffness force has been split into two terms the

basic linear term of the outer linear region and the nonlinear

term which is now a control system feedback loop The nonlinear

displacement function h( x) is that of equation 35) and fig-

ure with appropriate change in the notation A block diagram

of the resulting system is shown in figure 12. (The quantity s

is the Laplace transform variable ) In the block diagram the basic
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linear dynamic system is excited by a Gaussian white noise process

with amplitude parameter o and by the nonlinear feedback term

The block diagram of the augmented aircraft system is shown

in figure 13. This diagram gives specific relations for the sys-

tem elements shown in figure 10. The relation for the aircraft

dynamics gives the pitch response to the aerodynamic force inputs

In developing this relation whose specific form is given in

appendix D, the secondary effects of the forward speed perturbation

and wing-tail convective time lag have been omitted The feedback

loop has four elements which correspond to those of figure 10.

Comparison of figures 12 and 1 3 reveals the similarity of the

bilinear spring and the aircraft systems The dynamic properties

of the two basic systems have the same functional form that is a

single oscillatory mode Both feedback systems have an amplitude-

limited displacement which generates a restoring force for the

basic dynamic system There are however several differences in

the feedback loops The autopilot system has an additional gain

on the pitch rate which has a minor effect on the pitch response

The other differences in the feedback loop involve dynamic effects

in the servosystem and the elevator aerodynamics For the param-

eters of the present problem these dynamic effects are negligible

at the frequency of the dominant short-period mode The remaining

difference between the two dynamic systems is the form of the two

excitation functions Since the response of the two dynamic sys-

tems is dominated by a single oscillatory mode the variances of

the response are closely related to the values of the power spec-

tral density function of the excitation process at the frequency

of that mode However the nonlinear effects introduce a change

in the frequency of the oscillatory mode Thus the variance of

the response is influenced by the frequency dependence of the

power spectral density function of the excitation process which

for atmospheric turbulence can be considerable Since the power

spectral density function of a white noise process has a constant

value this effect is missing in the response of the bilinear

spring system Thus there are significant differences in some of
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the properties of the response of the bilinear spring and the

aircraft systems as discussed subsequently.

Control effectiveness factor In the application of the

equivalent linearization technique the nonlinear element is

replaced by an equivalent linear element whose properties are

defined so that the variance of the difference between the

responses of the linear and nonlinear elements is a minimum. In

the present case this condition is applied to the nonlinear rela-

tion between the two elevator deflection coordinates eq (35 ) )

The equivalent linear relation for the two elevator deflection

coordinates is

^ -- ^ c < 37 )

The quantity hg is the control effectiveness factor or simply

the effectiveness factor of the equivalent linear system, which

accounts for the elevator deflection limiting. The variance of

the difference between the nonlinear and the equivalent linear

relations for the physical elevator deflection is

E /[h ( ^ ) h^] 2 a\ 38 )

The control effectiveness factor is defined to minimize this

variance

^

B [^p) . e l.]
^E [^2 .]

The indicated statistical averages are based on the response of

the equivalent linear system to the conditional process The sys-

tern input and the system response are both Gaussian conditional

processes The probability density function of the commanded ele-

vator deflection is
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\

The control effectiveness factor is determined by equation ( 39 )

by using the functional relation for the physical elevator

deflection ( eq ( 35 ) ) and by using the probability density func-

tion of the commanded elevator deflection of the linearized system

(eq ( 40 ) )

h, = erf 6?1 ^ (41 )[^A^)
(This relation is a special case of eq (21 ) The control

effectiveness factor has a maximum value of one and a minimum

value of zero and approaches these values in the limits of small

and large values of the amplitude parameter respectively It is

noted that the minimum variance condition on the difference of the

elevator deflections ( eq ( 38) ) is also a minimum variance condi-

tion on the differences of the associated elevator aerodynamic

forces ( eq 34 ) ) since the quantities are proportional in the

present case

Once a linear relation between the two elevator deflection

coordinates eq 37) is obtained one of these coordinates can

be eliminated from the equations of the dynamic system One

approach is the elimination of the physical elevator deflection

The resulting control law and aerodynamic force relation are

^h ’Sc + 5c K g e + K g’e (42a)

"6 = ^d^Vc ( 42b)

The equations for the resulting equivalent linear system are the

same as for the original linear system of appendix D except that

the effectiveness factor is introduced into the aerodynamic deriv-

atives of the elevator deflection The elevator deflection
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coordinate of the linear system becomes the commanded elevator

deflection The solution of the linear equations gives the stan-

dard deviation factor of the commanded elevator deflection which

is required for the basic relation (eq ( 41 ) ) An alternate but

equivalent approach is the elimination of the commanded elevator

deflection The resulting control law and aerodynamic force rela-

tions are

W p + ^ = ^e 8 + W6 (43a)

^ = ^C^p ^3b)

In this form the effectiveness factor is introduced into the two

control system gains The elevator deflection coordinate of the

linear system becomes the physical elevator deflection The solu-

tion of the linear equations gives the standard deviation factor

of the physical elevator deflection This relation must be

transformed by equation 37 to give the standard deviation factor

of the commanded deflection which is required for the basic rela-

tion ( eq ( 41 )

The preceding development gives the essential relations for

applying the equivalent linearization technique to the nonlinear

control-surface limiting effect in aircraft response The applica-

tion follows this procedure First the equivalent linearization

technique is applied to the nonlinear system and thus introduces

the effectiveness factor into the equations of the dynamic system.

Second the resulting linear equations of motion are solved for

the response to the Gaussian conditional process for a series of

values of the effectiveness factor between zero and one This

procedure assumes that the equivalent linear system is stable for

all values of the effectiveness factor The solution gives the

standard deviation factors of the conditional response which are

functions of the effectiveness factor but not of the amplitude

parameter a Third the relation between the standard deviation

factor of the commanded elevator deflection coordinate and the
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effectiveness factor is combined with the basic relation

(eq (41 ) ) By eliminating the elevator quantity the effective-

ness factor becomes a known function of the amplitude parameter

By using this relation the standard deviation factors of all

response quantities are known functions of the amplitude parameter

Finally, the system response to the amplitude modulated process is

developed from the conditional response by introducing the random

variation of the amplitude parameter

Development of Response of Augmented Aircraft System

The procedure for implementing the equivalent linearization

technique is applied to the example of control surface limiting in

aircraft response to atmospheric turbulence The example uses the

equations of motion and the data of reference 21 which are dis-

cussed in appendix D. The effectiveness factor is introduced into

the linear equations of motions in the terms for the aerodynamic

lift and moment due to the elevator deflection The equations are

solved for the standard deviation factors of the aircraft response

for a series of values of the effectiveness factor between zero

and one The resulting standard deviation factors of both the

commanded and the physical elevator deflection coordinates are

plotted in figure 14 in normalized form as functions of the effec-

tiveness factor They are normalized by their maximum values

which are equal to the standard deviation factor for the elevator

deflection of the fully effective control system As the deflec-

tion limiting becomes significant the value of the effectiveness

factor decreases from the value of one down to zero and the stan-

dard deviation factors of both elevator deflection coordinates

decrease from their maximum values down to zero The difference

between the standard deviation factors of the commanded and the

physical elevator deflections is a direct result of the elevator

deflection limiting The decrease of the standard deviation

factor of the commanded elevator deflection from its maximum

value is the effect of the elevator deflection limiting upon the
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aircraft dynamic system By using the results of figure 14 and

the basic relation eq (41 ) ) the relation between the effec-

tiveness factor ’and the amplitude parameter is determined by

eliminating the standard deviation factor of the commanded eleva-

tor deflection The resulting relation is plotted in figure 15 in

nondimensional form By using this relation the standard devia-

tion factors of all response quantities which are known functions

of the effectiveness factor from the solution of the equations of

motion become known functions of the amplitude parame.ter For

the elevator deflection coordinates this relation is obtained by

combining results of figures 14 and 5 thus figure 16 shows the

relations in nondimensional form as functions of the amplitude

parameter These relations show the transition from the full activ-

ity of the elevator to the reduced activity as either the ampli-

tude parameter of the input random process is increased or the ele-

vator deflection limit is decreased

The standard deviations of the two elevator deflection coor-

dinates for the response to the amplitude modulated random pro-

cess are obtained from the conditional response by introducing the

random variation of the amplitude parameter ( eqs (22 ) and ( 23) )

The resulting standard deviations for the response to the ampli-

tude modulated process are plotted in figure 17 in nondimensional

form as functions of the standard deviation of the amplitude modu-

lated process The response shows the transition from the full to

the reduced activity of the control system as either the standard

deviation of the amplitude modulated process is increased or the

elevator deflection limit is decreased

The pitch response of the aircraft is examined next This

quantity particularly shows the effect of the elevator deflection

limiting since the control system is designed to reduce the pitch

angle changes due to the atmospheric turbulence The relation

between the standard deviation factor of the pitch angle and the

effectiveness factor is shown in figure 18 in nondim-ensional form

This relation is obtained from the solution of the equivalent

linear form of the dynamic equations of the augmented aircraft
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system By combining the relations of figures 15 and 8, the stan-
dard deviation factor of the pitch coordinate is a known function

of the amplitude parameter The resulting relation is shown in

figure 19 in nondimensional form The standard deviation factor

of the pitch coordinate shows the transition from its minimum

value with full operation of the control system to the increased

values as the control system effectiveness is reduced because of

the elevator deflection limiting with increased values of the

amplitude parameter The pitch response to the amplitude modulated

process is obtained by introducing the random variation of the

amplitude parameter The resulting relation for the standard devia-

tion of the pitch coordinate is plotted in figure 20 in nondimen-

sional form as a function of the standard deviation of the ampli-

tude modulated process From the result of figure 20, the pitch

response approaches that of the fully augmented airplane as the

effect of the elevator deflection limiting vanishes in the limit

either of small values of the turbulence intensity or of large val-

ues of the elevator deflection limits In the opposite limits the

pitch response approaches that of the unaugmented aircraft

The pitch rate is now examined By following the steps of

the procedure the relation between the standard deviation factor

of the pitch rate and the amplitude parameter is determined The

resulting relation is plotted in figure 21 in nondimensional form

The dependence upon the amplitude parameter is weaker for the

pitch rate than for the pitch itself fig 9 ) However the

standard deviation factor of the response rate is not independent

of the amplitude parameter as it is in the case with the bilinear

spring system This difference between the responses of the two
dynamic systems is primarily the result of the differences between

the spectral functions of the excitation processes of the two
systems

The exceedance expression for the pitch response is developed
from the previous results Since the conditional probability den-

sity functions of the pitch and pitch rate are both Gaussian for

the response of the equivalent linear system, the exceedance
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expression for the conditional process is known. The exceedance

expression for the response to the amplitude modulated process is

determined from the conditional expression and equation ( 27) as

N(e ) = -L- F Aee (g ) ’exp --=^2--- p(a ) do (44)
2V ^O W0 ) ^Ae e2^ )0 2.

The two standard deviation factors are known functions of the

amplitude parameter ( figs 1 9 and 21 ) The required integration

is performed numerically The resulting exceedance expression is

shown in figure 22 in nondimensional form as a function of the

pitch response level for two values of the elevator displacement

limit The exceedance expression shows the increased pitch

res’ponse of the aircraft as the value of the elevator deflection

limit is decreased The exceedance expressions for the aircraft

pitch response with the autopilot on and with the autopilot off

are also shown The exceedance expression generally follows that

of the augmented aircraft at low response levels At the higher

response levels the exceedance expressions begin to parallel that

of the unaugmented aircraft but are significantly lower in value

Discussion

The present method of the combination of the equivalent lin-

earization technique with the development of the amplitude modu-

lated random process can be applied to more general forms of non-

linearity in dynamic systems A variety of nonlinear effects can

be important in aircraft response to atmospheric turbulence such

as the inherent nonlinearities in the aircraft equations of

motion aerodynamic effects pilot action and several aspects of

control system action The present example uses a simple form of

the equivalent linearization technique which replaces a static

nonlinearity by a single linear gain Many other forms of the

technique have been developed which allow the application of the

method to a wide variety of nonlinear dynamic systems The
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formulation and application of the equivalent linearization tech-

nique to combinations of static nonlinear elements are given in

references 1 1 and 23. Several forms of the technique which con-

sider the dynamic properties of the nonlinear elements are

reviewed in references 12 and 20. These alternate forms of the

equivalent linearization technique can be directly applied to the

present method of analysis since the application of the technique

is separate from the development of the amplitude modulated

process

The present development can be extended to include other

functional forms of the probability density of the amplitude

parameter In the quasi-steady approximation there is no

restriction on the form of the random variation of the amplitude

parameter since the dynamic effects of that random variation are-

omitted The present development has considered a Gaussian

related form of the probability density function of the amplitude

parameter In aeronautical applications a modification of this

form is used for atmospheric turbulence based on the concept of

multiple types of turbulence ( ref 3) The probability density

function of the amplitude parameter is formed by the sum of two

( or more) Gaussian related functions

~0 (o < 0 )

P^ f2 ^ -^/Sb 2 ( 45 )
\/^- Z PI J- e / 1 (CT ^ 0 )

J^ i=1 b!

The quantities P. and b are the probability and intensity

parameters of atmospheric turbulence respectively The response

of the augmented aircraft system to an amplitude modulated process

with this form for the random variation of the amplitude parameter

can be developed from the previous results For example the

exceedance expression is found from the general relation ( eq (27) )

By using the nondimensional form of the previous results the
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new exceedance expression for the aircraft pitch response is

2 \

N( e ) y P. N f-e-\ ( 46)
i=1

1 (Ae ^
The results for other response quantities can be developed in the

same manner

The present analysis is restricted to symmetric nonlinear sys-

tems thus the response has zero mean values This restriction

applies to cases of aircraft response where the control surface

limiting is symmetric If the limiting is not symmetric then a

modified form of the analysis must be used The case of a non-

symmetric bilinear spring system is examined in appendix C and

includes the analysis of the response to both the conditional and

the amplitude modulated processes The primary new feature of the

response is the possibility of a nonzero mean value Nonsymmetric

control surface limiting effects can be important in aircraft

dynamic response for example in an aircraft with a pitch damper

in response to the vertical component of the turbulence By using

the nonsymmetric bilinear spring system as an analogy, the mean

position of the control surface will change with significant

limiting in extreme turbulence that is the aircraft retrims

itself

CONCLUDING REMARKS

A method is developed for the analysis of nonlinearities in

aircraft dynamic response to random atmospheric turbulence The

method is a combination of the equivalent linearization technique

for the analysis of nonlinear dynamic systems and the development

of the amplitude modulated random process The equivalent lin-

earization technique is used to replace a nonlinear element by

an equivalent linear one The response of the equivalent linear

system to a Gaussian random process is developed as a function of

a linearization parameter By using the equivalent linearization
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technique the linearization parameter is related to the amplitude

parameter of the excitation random process Thus the response to

the Gaussian process is known as a function of the amplitude param-

eter The response to the amplitude modulated process is then

determined by introducing the random variation of the amplitude

parameter

The method is applied to the analysis of two nonlinear

dynamic systems The response of a spring-mass-damper system with

a bilinear spring is analyzed For this system an exact solution

for the joint probability density function of the displacement and

velocity is obtained by use of the Fokker-Planck equation The

system response obtained by the equivalent linearization technique

shows good agreement with the exact solution for the response

The response of an aircraft with an autopilot which drives a dis-

placement-limited control surface is also analyzed The analyti-

cal method is used to determine the moments and the exceedance

expressions of the aircraft response

Langley Research Center
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Hampton VA 23665
July 9 976
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APPENDIX A

THE AMPLITUDE. MODULATED RANDOM PROCESS AND

THE FOKKER-PLANCK EQUATION

The basic analytical techniques used in the present study are

discussed in this appendix The amplitude modulated random pro-

cess and the Fokker-Planck equation are discussed together with

an application of the Fokker-Planck equation to the analysis of

the response of dynamic systems to the amplitude modulated random

process

Amplitude Modulated Random Process

The amplitude modulated random process is formed by a local

Gaussian process in combination with a slower random modulation of

the standard deviation of the local process The random process

is used to model atmospheric turbulence in many aeronautical appli-

cations The random process was originally developed to account

for the properties of measured atmospheric turbulence data ( rets 3
and 4) The mathematical properties of the process have been

examined and developed in reference 6 where the amplitude modu-

lated random process was referred to as the Press model of atmo-

spheric turbulence

The defining relation for the amplitude modulated process is

z( t) = r(t) s t) (A1 )

The two component processes ( R and S ) are specified to be inde-

pendent and stationary The R process is a rapidly varying

local Gaussian process the S process is a slowly varying ampli-

tude process which modulates the R component The joint proba-

bility density function of the amplitude modulated process and the

amplitude component is developed from the defining product rela-

tion ( ref. 24 )
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p(z ,s ) = p (r=z/s) p( s) (A2)
s

An associated conditional process can be developed from the two

component processes By using the definition of the conditional

probability density function and equation ( A2) the conditional

^ function is

^ p(z s) = -1 p_(r=z/s) (A3)
s

If the probability density functions of the R and S component
processes are given then the probability density function of the

amplitude modulated process can be determined from the joint den-

sity function by using equations A2) and ( A3

p( z) J p( z ,s ) ds = p( z s) p( s) ds ( A4)

Since the local R process is Gaussian the conditional process

is also Gaussian by equation ( A3)

p( z s) exp f -z2 \ (A5 )
\/2r A s ^A 2-2z V-"z s /

This is the locally Gaussian assumption of the original develop-

ment ( rets 3 and 14 ) The conditional process generates an asso-

dated set of conditional moments The most important of these

moments is the variance of the conditional process

E [z2 s] = A^s2 (A6)
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Thus the standard deviation of the conditional process is the

product of the amplitude parameter s and a standard deviation

factor A, which is independent of s

The exceedance expression ( the expected frequency of positive

slope crossings of a given level of the process is an important

quantity in the analysis of atmospheric turbulence data and in the

specification of structural fatigue and strength design criteria

It is developed from the joint probability density of the random

process and its first derivative ( rets 8 and 9 ) ;,

N( z) / z P z ,z dz (A7 )

^O

The exceedance expression for the conditional process is developed

in the same manner

r
N(z s) z p ( z ,z s) dz (A8)

O

The exceedance expression for the amplitude modulated process is

obtained from that for the conditional process by using the rela-

tion for the joint probability density function of the random pro-

cess and its first derivative which corresponds to equation A4)

N( z) = / N (z s) p( s) ds A9)
/_<

An associated problem is the analysis of the response of

dynamic systems to the amplitude modulated random process The

problem is difficult to treat in general terms since -the amplitude

modulated process is not Gaussian However the problem can be

treated approximately by using the modulation concept that the
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amplitude process S is slowly varying -relative to the local R

component process Under this concept which is termed the quasi-

steady approximation the dynamic aspects of the response are due

to the Gaussian R component process only Thus for linear sys-

tems the R component ( and the conditional process) of the excita-

tion and the response processes are both Gaussian For nonlinear

* systems the problem is more complicated The conditional process

of the response is generally not Gaussian Thus the properties
T of the response can be significantly different from those of the

amplitude modulated excitation process For example the standard

devia-tion factor A of the nonlinear response will generally be a

function of the amplitude parameter s

E [z2 s] = A^2(s) s2 (A1 0)

The amplitude process is specified to be Gaussian by follow-

ing the original development of reference 3 that is

p( s) 1 e-32/2132 (A1 )
\l2v b

The probabilistic structure of the amplitude modulated process is

completely defined by the Gaussian distributions of the amplitude

and the R component processes For example the exceedance

expression is obtained from equations ( A8) and ( A9 ) and from use

of the quasi-steady approximation

N(z) = Npe" ^ 1^13 (A12)

The exponential form of the exceedance expression was the basis of

the original development of the amplitude modulated process in

reference 13.
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Fokker-Planck Equation

The Fokker-Planck equation is a method for analysis of the

response of linear and nonlinear dynamic systems to random pro-

cesses The method was originally developed in the analysis of

Brownian motion ( ref. 25, for example) The development of the

Fokker-Planck equation and examples of its application to nonlin-

ear dynamic systems are given in references 19 and 26. General

reviews of the method and its application to the analysis of ^

dynamic systems are presented in references 8 and 9

The response of a dynamic system to a random process is

described by the associated transition probability density

function

P P(y,t yo,t o ) (A1 3)

This quantity is the probability density function of the response

at time t conditional on the given value of the response at an

earlier time t^. The quantity y is the array of independent

variables of the dynamic system The transition probability den-

sity function is determined by the Fokker-Planck equation

+/- -, --(a p) + 1 --^---(e p) (A1 4)
a t s y^

x 2 a y^ 3 y^ ^

The convention of repeated indices implying a summation is used

The coefficients are the derivate moments which are the limiting

values of the first and second moments of the incremental response

of the dynamic system
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"1
a ^ = lim .!_ j 6y^ p(y + 6y t + 6t y, t) d ( 6y)

6 t- 0 6 t J

> (A15)

r
^ ij = j^n J 6yi&y ^

p(y + ^ ^ + 5t y t ) d ( 6y )
o ’"*" 0 o t J

t J

In the general case the differential equation for the transition

probability density function has additional terms which involve

higher order derivatives However the associated higher order

derivate moments are zero and consequently these terms are also

zero in the present application as discussed subsequently

Fokker-Planck Equation and the Amplitude Modulated Process

The Fokker-Planck equation is applied to the analysis of the

response of dynamic systems to the random process formed by the

product of two Gaussian processes ( eq (A1 ) ) The formulation

requires the development of the derivate moments for the composite

dynamic system which includes the differential equations for both

the dynamic system and the two component processes R and S. In
the present example the R component is a Gaussian white noise

process The amplitude component is specified to be a first-order

filtering of a second Gaussian white noise process Thus the

amplitude process S can be slowly varying relative to the local

process R.

The state equation for the nonlinear dynamic system is

Yi = ay f^ (y) + g^s C (t) (A1 6)

In this form the state equation consists of the array f of func-
tions of the system response and the array g- of constants which

multiply the excitation random process The excitation process is

the product of two Gaussian processes the R component being a
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white noise process The differential equation for the amplitude

component process is

s = -a -s + \/2a b ^(t ) (A17)

These equations are combined to give the state equation for the

composite dynamic system, the state vector consisting of the

response variables of the dynamic system and the amplitude process

The coefficients BQ and a are frequency scal-e constants which

are used to identify the relative dynamic properties of the non-

linear system and the amplitude process in the subsequent discus-

sion The random excitation of the composite system consists of

the two independent Gaussian white noise processes of equa-

tions ( A16) and (A1 7 ) which have zero mean values and autocorre-

lations ’equal to Dirac delta functions

E [^ (t )] - 0

’6(t t^) (J k) ^ (A1 8)

E [cj (t
^

) ^k^~\ =
0 ( j 1. k)

With this definition of the autocorrelation function of the white

noise processes and with the differential equation of the ampli-

tude process ( eq (A1 7 ) ) the resulting amplitude process has the

probability density function of equation ( A1 )

The derivate moments ( eq (A15 ) ) are obtained from the state

equation of the composite system. The derivate moments are those

of a nonlinear dynamic system under white noise excitation except

for those moments which correspond to the terms with the product

of the amplitude and the first white noise process of equa-

tion (A16) Since these two processes are independent the ampli-

tude variable appears only as an amplitude factor in the derivate

moments associated with this excitation term. The associated

higher order derivate moments are zero as a result of both the
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independence property and the Gaussian property of the white noise

process The resulting derivate moments are combined with equa-

tion (A14 ) to form the Fokker-Planck equation of the composite

dynamic system of equations (A1 6) and (A1 7)

^ = -Bo -i-^y ) pi . 1 s2 _j^__
^ [l_(sp , ^ ^at u

ay^ L -i- J 2 1 -I ay^ ayj as gg2

(A1 9 )

Again repeated indices imply a summation The first term on the

right-hand side results from the response term of the original

dynamic system of equation (A1 6) The second term results from

the excitation of the original dynamic system by the product pro-

cess This term couples the amplitude and the dynamic system

variables in the Fokker-Planck equation The last two terms give

the Gaussian form of the amplitude process as a first-order fil-

tering of white noise The time derivative term on the left-

hand side accounts for the nonstationarity of the system response

This term is droppped in the subsequent development which consid-

ers only the stationary case

The Fokker-Planck equation gives the joint probability den-

sity function of the dynamic system variables and the amplitude pro-
cess S. The equation is replaced by the corresponding equation

for the conditional probability density function with the ampli-

tude process as the conditional variable

P (y s ) p^(y s ) p (s ) (A20)

By using the probability density function of the amplitude process

(eq (A1 1 ) ) together with equation (A1 9 ) the Fokker-Planck equa-

tion for the conditional density function is

--[f,(y ) p n ^ ^__ -. , fb2 ^ S ^ (A21 )
ay^ L i cj 2ao ^ ay^ ay^ ^ ^2 as j
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where

e = a!
a0

The solution of this equation can be developed in a perturba-

tion form which is related to the quasi-steady approximation It

is assumed that the amplitude process is slowly varying relative

to the system dynamics that is the ratio of the associated fre-

quency scale constants ( a- divided by ar> ) is much less than one

The conditional probability density function is accordingly writ-

ten in series form with this ratio as a perturbation parameter

Pc (yl s) = ^ en " n^ ^ ) (A22)

n=0

By combining the series expression with the Fokker-Planck equation

(eq (A21 ) ) a set of equations is generated for the functions <(>n

of the series The equation for the first term of the series is

0

^i^ *o W] ^ ^W, ^y - ("3 )

This relation is the Fokker-Planck equation for the original

dynamic system ( eq ( A1 6 ) ) the quantity s being an amplitude.

parameter which multiplies the excitation white noise process

The resulting probability density function is the conditional

function of the system response conditional on the value of the

amplitude parameter s The preceding development is thus the

quasi-steady approximation for the analysis of the response of

dynamic systems to the amplitude modulated process ( eq (A1 ) )

The approximation is based upon the modulation concept that the

time variation of the amplitude process is much slower than that
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of both the R component process and all coordinates of the

dynamic system. The quasi-steady form of the Fokker-Planck

equation (eq (A23) ) is a limiting case of the exact equation

(eq. (A21 ) )

The development of the quasi-steady approximation in this

case depends on the relative values of the two frequency scale

constants ag and a., The definition of the constant an of

the nonlinear system depends upon the specific- form of the system

under consideration For the bilinear spring system considered in

the text a frequency scale constant is easily defined since the

nonlinear system has two limiting linear systems In this case

the frequency scale constant ar, is the minimum value of the

natural frequencies of the two limiting linear systems

The response of dynamic systems to the amplitude modulated

process can thus be analyzed by use of the quasi-steady approxima-

tion The analysis procedure consists of two steps First the

probability density function of the system response to a stationary

Gaussian process with a constant amplitude parameter is deter-

mined by the Fokker-Planck equation This is the conditional prob-

ability density function of the response Second the random vari-

ation of the amplitude process is introduced through equation (A4
For linear dynamic systems this procedure is relatively simple

since the dynamic response to the Gaussian conditional process is

also Gaussian Also the amplitude parameter appears solely as

an amplitude factor which does not change the functional form of

the probability density of the response For nonlinear dynamic

systems the response to the Gaussian conditional process is gen-

erally not Gaussian The functional form of the probability

density of the response generally changes as the amplitude param-

eter varies Thus the response cannot be developed in general

form as it can be for linear systems

The amplitude component is specified to be a Gaussian process
in the development of the quasi-steady approximation This speci-

fication is required for the formulation of the exact system

response including the dynamic effects of the amplitude process
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(eq (A 17 ) ) However the dynamic properties of the amplitude pro-

cess are omitted once the quasi-steady approximation has been

established The amplitude process can then be presented in a

Gaussian related form which is restricted to nonnegative values

a s (A24)

This formulation for. the amplitude process is commonly used in the

aeronautical literature The original approach ( ref. 3 intro-

duced the amplitude process as a scale factor in the standard

deviation of the conditional process by use of equation A5 )

Under the quasi-steady approximation the formulations of the

amplitude modulated process in terms of the o and the s vari-

ables are equivalent The properties of the two processes are

related by the transformation of equation A24) The probability

density function of the modified form of the amplitude process is

’0 (CT < 0

p( o ) = (A25 )

,/I l e-02/^2 (0 < a )
VTT b

The local Gaussian process (white noise in this case and the

associated system response always occur in combination with the

amplitude parameter ( either s or o This relationship fol-

lows from the form of the system excitation function ( eq (A1 6 ) )

In aeronautical applications an arbitrary scale factor between

the local process and the amplitude parameter is established by

defining the local process to have unit variance ( ref. 7 ) In

the present case this approach cannot be used since the vari-

ance of the local process is not defined Thus the standard

deviation factors of the response quantities are devoid of their

usual meaning the ratio of the standard deviations. of the (con-

ditional ) response and excitation processes However the nota-

tional separation of the standard deviation of the response into
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the product of a standard deviation factor and an amplitude

parameter eqs (A6) and ( A10 ) for example) is retained

in the white noise case in order to correspond to the usual

notation of the aeronautical literature
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APPLICATION OF FOKKER-PLANCK EQUATION TO

SYMMETRIC BILINEAR SPRING SYSTEM

The application of the Fokker-Planck equation to the analysis

of the response of the dynamic system with a symmetric bilinear

spring is developed in this appendix This system is a special

case of a general class of systems discussed in references 19 and

26.

A single-degree-of-freedom spring-mass-damper system wi.th a

nonlinear stiffness force is considered

mx + P x + f(x) = o C (t) (B1 )

The stiffness force relation for the symmetric bilinear spring is

"k^(x + XQ ) (x < -x^)

f(x) = k .,x (-Xb ^ x ^ x^) (B2)

k^(x xp ) (x^ < x)

where

y 2 k!
k^

XQ = ( Y ^Xb
The bilinear stiffness force relation is plotted as a function .of

the displacement in figure 1 The excitation random process is

stationary Gaussian white noise with zero mean value The auto-

correlation function is a Dirac delta function
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E [e ( t)] = 0 "1
\ (B3)

E p (t ., ) S (t^)] = 2D 5 (t^ t., ) [
The power spectral density function of the white noise process has

a constant value equal to the quantity D divided by ir The

white noise process is multiplied by the amplitude parameter a

which is a constant in the present development

The joint probability density function of the displacement

and the velocity ( conditional on the value of the amplitude

parameter o ) is obtained from the Fokker-Planck equation By

using equations ( A16) and ( A23) the Fokker-Planck equation for

the dynamic system of equation (B1 ) is

^
-v l- rp(x ,v o )1 + ^- {[8v + f(x)] p(x ,v o )l + Do 2 -^-- [pCx ^ lo )] = Q

9x- J 3V < 3 V

(B4)

where

v = x

In this case the Fokker-Planck equation can be solved by the

method of separation of variables

p(x ,v o ) p(x o ) p(v a ) (B5)

This relation states that the displacement and velocity of the

system response are independent By applying the separation of

variables the Fokker-Planck equation gives separate equations for

the two first-order probability density functions The solution

of the equation for the probability density function of the

displacement is
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p(x o ) = Cn exp f- -J- /’x f(x) dx (B6 )

[ D^O

For the bilinear spring (eq (B2) ) the probability density func-

tion of the displacement is

C0 ^P^- ----7 [(x + xo ) 2 + ^XbXo] ) (x < -x^)V 2Ax22-2 J
F ?1p(x o ) = CQ exp^- ----- x’- l (-x^ $ x < x^)
\ ^xl202 /

CQ exp^- ---^ r^ X0) 2 + 1r 2xbx0^ > ^b < x)

\ ^xS202 ’j
L (B7)

where

A^ 2 , D/,^

Ax22 = 0/^2 = ^x 2

The probability density function has Gaussian functional forms in

the linear regions of the stiffness force relation with the vari-

ances and mean values for the linear systems corresponding to

those regions The probability density is a continuous function

of the displacement as indicated by equation (B6 ) The unknown

constant in equation (B7 ) is determined by the normalization con-

dition that is the total probability must be equal to one

CQ-I = ^/2iA^CT [erf n + g (v ,n )] (B8)

where

n = xb
v2A^a
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g(y ,n ) = -y exp [(y 2 )n ^erfc (yn )

The probability density function (eq (B7) ) determines all

the moments of the displacement The mean value and all other odd

order moments are zero a property which follows from the anti-

symmetry of the stiffness force The relation for the variance

of the displacement is

E [x2 |a] = a^2 == ^y2{a )a 2 (B9)

(y 2 1 ) f- ^- n (. 2 De-n
2 + D + S^2 Dn 2^^Ax~ (a )

^ ^
L ^T_____________________J.

A 2 erf n + g (y ,n
A.

(B1 0

The Fokker-Planck equation also gives a differential equation

for the probability density function of the system velocity whose

solution is

/ 2 \
p (v o ) exp f- -v--} (B1 )

v^Ay0 V 2A^2^
where

n 2 D
v ^m

Thus the velocity is a Gaussian random variable The probability

density of the velocity is identical to that of a corresponding

linear system under white noise excitation in which case the

probability density function is independent of the stiffness

force
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RESPONSE OF NONSYMMETRIC BILINEAR SPRING SYSTEM

The effects of nonsymmetry in the bilinear spring system are

discussed briefly in this appendix The probability density func-

tion of the response of the nonsymmetric dynamic system is

obtained from the solution of the Fokker-Planck equation The

solution for the system response is developed first for excitation

by the conditional process and then for excitation by the ampli-

tude modulated process The main item of interest is the mean

value of the displacement which can be nonzero due to the nonsym-

metry. The differential equation of the system has the same gen-

eral form as that for the symmetric system ( eq (B1 ) ) The

bilinear stiffness force is formed from linear regions the two

outer regions having the same linear stiffness force coefficient

The breakpoints between the linear regions are not symmetric in

the displacement

k^ (x + a xg ) (x < -" x^)

f(x) k ^x (-"x^ ^ x x^) (C1 )

^ (x Xp ) (x^ < x)

where

a > 0

The probability density function of the response to the condi-

tional process is determined by the Fokker-Planck equation By

using the solution for a dynamic system with a general nonlinear

stiffness relation eq ( B6) ) the probability density function of

the displacement is
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^0 ex? </ ---"^ l^ + "^^ + 2^2xbxo1 > (x < -^h)

^ 2Ax22(J2 L J/
p(x o) = CQ exp f- --1-- X2} (-"Xb ^ x ^ Xb)

I ^x-I202 J
C0 SXP < ----^V^ X0)2 + ^XbXQ"] ) (Xb < x)

V 2Ax22CT2 ,;
L (C2)

The coefficient is determined by the normalization condition

00-1 \iL> Ax1CT [s1^11 ^ + erf(clT1 ) + g (Y >n + g (Y ,oin )3 (C3)

The probability density function of the velocity is unchanged from

the symmetric case eq (B1 The joint probability density

function of the displacement and velocity which are independent

for the response to the conditional process is thus known This

function can be used to determine the various moments the exceed-

ance expression and other response quantities

The primary new feature in the nonsymmetric case is the exis-

tence of nonzero odd order moments of the displacement The con-

ditional mean value is obtained from the conditional .probability

density function eq (C2 )

E[x o ] CoA^ 2a2 (y2 -I )^
2 e-02^ 2

\/,r [n g (Y ,n ) an g(y ,cxn )Jj>
(C4)

The conditional mean value of the displacement is plotted in

figure 23 in nondimensional form as a function of the amplitude

parameter o for one set of the parameters of the nonsymmetric

bilinear stiffness force The conditional mean value shows the

properties of the two limiting linear systems The conditional
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mean value approaches zero in the limits either of small values of

amplitude parameter a or of large values of the breakpoints of

the bilinear stiffness curve In these cases the stiffness force

is dominated by the inner linear region In the opposite limits

the stiffness force is dominated by the outer regions of the

stiffness force relation For large values of the amplitude param-

eter the conditional mean value approaches a limiting value which

is obtained from equation (C4)

x lim E[x o ] = -1( v ^ d " )XK (C5)
a 2

The response of the nonsymmetric dynamic system to excitation

by the amplitude modulated process is developed by introducing the

random variation of the amplitude parameter The relation for the

mean value of the response to the amplitude modulated process is

E[x ] = f E[x o ] p (o ) do (C6 )

0

The required integration over the amplitude parameter a is

intractable and is done numerically The mean value of the dis-

placement is plotted in figure 24 in nondimensional form as a func-

tion of the standard deviation of the amplitude modulated process

The parameters of the nonsymmetric bilinear stiffness force rela-

tion are the same as those used in figure 23 The mean value

shows the same qualitative behavior as in the case of the condi-

tional process In the limit ei.ther of small values of the stan-

dard deviation of the amplitude process or of large values of the

stiffness breakpoints the mean value approaches zero In the

opposite limits the mean value approaches the same limiting value

as in the case of the conditional process (eq (C5) )
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LINEAR EQUATIONS OF MOTION FOR THE AIRCRAFT SYSTEM

The linear equations of motion for the aircraft considered

are outlined in this appendix The equations of motion and the

aircraft system are described in detail in reference 21 The

aircraft is representative of small corporate jet transports
Only the whole-body longitudinal motions of the aircraft are

considered The augmentation system is an autopilot which con-

trols the deflections of the elevator on the horizontal tail

The equations of motion are basically the classical equations

of the dynamic response of a rigid aircraft ( ref 22) The

equations are written in the stability axes system with the origin
at the airplane mass center Four ’coordinates are used per-

turbations in nondimensional forward speed angle of attack

pitch angle and elevator deflection angle The equations of

motion are written in the form of their Laplace transformation as

[M ] { q} -ag{ f} (D 1 )
&

where

2V i^ S, -^a ^,0 0

M 2CL’0 ^u 2U ^ S ^ c- tk st(s) ~2V ^ S S 2^ s

-^ cm" ^o sl(s) 1B ^ s2 S iio s -^
0 o sT--T^6 + Kes) -1

cn
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r^

no" 8

u
and

r^ 1"a

C + /C C \-^- s A(s )

^ ^ [ ^ Zqj 2uQ

< )
c^ + [c^ S)iSo S A( S )

.0

The classical equations are modified to include a pure con-

vective time lag of the wing downwash and of the turbulence veloc-

ity between the wing and the horizontal tail This modification

is achieved by multiplying the angle-of-attack rate and the turbu-

lence rate terms by the function

A ( g) = J_( e-^) (D2)
T S

The quantity T is the distance between the aircraft center of

mass and the aerodynamic center of the tail divided by the forward

speed of the aircraft For this application it is assumed that

the terms associated with the angle-of-attack rate a and the

pitch rate q in the equations of motion originate from only the

tail forces Except for the transport time lag between the wing

and tail the unsteady aerodynamic effects are represented in

60



APPENDIX D

quasi-steady form Except for the notation given in equation (D2)

the notation of equation (D1 ) follows that of reference 21

The autopilot control relation consists of first-order ser-

vosystem dynamics and two feedback gains one for the pitch K

and the other for the pitch rate K’. Therefore
9

6 = ---3---- (K, + K- s^ e (D3)
^ch + 1 v 9 9 /

The present study considers only one set of the parameters of the

control law. The servosystem characteristic time t
^ has a value

of 0. 037 second -The pitch gain Kg has a value of 1 0; the pitch-

rate gain Kg has a value of 0. 054 This value of pitch-rate

gain corresponds to the value of 10 0 quoted in reference 21

where a time scale factor (mean aerodynamic chord of the wing

divided by twice the aircraft forward speed ) was omitted

The airplane equations of motion are solved for the variances

of the response by frequency response methods The stationary ran-

dom process of the vertical component of the one-dimensional turbu-

lence velocity field is represented by the von Karman form of the

power spectral density function ( ref 7 rather than the Dryden

form used in reference 21 A value of 762 m ( 2500 ft is used for

the scale of turbulence The standard deviation factor of the

excitation process has unit variance The power spectral density

functions of the response are determined from the product of the

spectral function of the vertical component of the turbulence

velocity and the square of the modulus of the frequency response

functions which are obtained from equation (D ) The variances of

the response are obtained by integrating the power spectral den-

sity functions over an appropriate range of frequency values The

flight condition considered has an altitude of 6 100 m ( 20 000 ft)

and a Mach number of 0. 75 The mass data and the stability deriva-

tives for this condition ( condition IV) are listed in reference 21

The equations of motion of the aircraft can be presented in a

simpler approximate form which is used to study the effects of
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the turbulence and the control system upon the pitching motion

The approximate relation is the same as equation (D1 ) except that

the forward-speed coordinate and the conveotive time lag between

the wing and tail are omitted The resulting equation for the

pitch coordinate is

(bps2 + b .s + b^ e = fa. + ^) ctg fd + do] 6 (D4)
\ "/ \ s / \ s /

where

bp = i^ f^ C .) (t*)2D \ "a/

’1 ~- ^ + ^ (^ + s) + cm^ s02"]^

^ - ^^ ^ (2. . C^

^ - [-^ (2P c^) c^]^
^ = (V^ c^)
t* c

2Up

In this form the excitation function consists of the aerodynamic

forces due to both the turbulence field and the elevator deflec-

tion The coefficients associated with the elevator deflection

(that is do and d ) have positive values for the flight con-

dition considered in the present study. The constants an and

a for the turbulence field are similar to the constants dn

and d-] for the elevator deflection.
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